
Estimating Productivity: Composite Operators for
Keystroke Level Modeling

Jeff Sauro

Oracle, 1 Technology Way, Denver, CO 80237, jeff@measuringusability.com

Abstract. Task time is a measure of productivity in an interface. Keystroke
Level Modeling (KLM) can predict experienced user task time to within 10 to
30% of actual times. One of the biggest constraints to implementing KLM is the
tedious aspect of estimating the low-level motor and cognitive actions of the
users.

The method proposed here combines common actions in applications into high-
level operators (composite operators) that represent the average error-free time
(e.g. to click on a button, select from a drop-down, type into a text-box). The
combined operators dramatically reduce the amount of time and error in
building an estimate of productivity. An empirical test of 26 users across two
enterprise web-applications found this method to estimate the mean observed
time to within 10%. The composite operators lend themselves to use by
designers and product developers early in development without the need for
different prototyping environments or tedious calculations.

Introduction

Measuring User Productivity

Measuring productivity with an interface is a key aspect of understanding how
changes impact its ease of use. One measure of productivity is the time saved by a
more efficient design, that is, a design with a task flow requiring fewer steps. Time
saved over repetitions of a task, as a measure of productivity, is a key aspect to
calculating return on investment (ROI). Productivity metrics are often needed well
before there is a working product or any existing users (esp. when the product is new).
Such constraints make gathering empirical measures of productivity from a
summative usability test difficult and untimely. The usual process for obtaining time
on task data involves recruiting then testing actual users in a lab or remote test setup.
This procedure while providing a wealth of informative data can be expensive, time-
consuming and requires a working version of the tested product.

As a large software organization, we have dozens of products with hundreds of
distinct application areas. There is a large demand for benchmarking and improving

2 Jeff Sauro

the time to complete tasks for mostly productivity-based software such as expense
reports, call center applications, etc. Conducting summative usability tests with the
main goal to record benchmark task-time data is a herculean undertaking that takes
resources away from formative designs. Our challenge was to derive a more reliable
way to estimate time-on-task benchmarks and to inform designers about the
productivity of their designs as early as possible during product development.

Cognitive Modeling

Rather than observing and measuring actual users completing tasks, another
approach for estimating productivity is cognitive modeling. Cognitive modeling is an
analytic technique (as opposed to the empirical technique of usability testing). It
estimates the task completion time from generalized estimates of the low-level motor
operations. Breaking up the task that a user performs into millisecond level operations
permits the estimation of task completion times for experienced users completing
error-free trials.

The most familiar of these cognitive modeling techniques is GOMS (Goals,
Operators, Methods and Selection Rules), first described in the 1970s in research
conducted at Xerox Parc and Carnegie-Mellon and documented in the still highly
referenced text The Psychology of Human Computer Interaction, by Card, Moran and
Newell (1983)[1]. GOMS itself represents a family of techniques, the most familiar of
which is Keystroke Level Modeling (KLM).

In its simplest form, a usability analyst can estimate user actions using KLM with
only a few operators (pointing, clicking, typing and thinking)—see [2] p.72 for a
simple introduction. KLM, probably because of its simplicity, has enjoyed the most
usage by practitioners. It has been shown to estimate error free time task completion
time to within 10 to 30% of actual times. These estimates can be made from either
live working products or prototypes. It has been tested on many applications and
domains such as maps, PDAs, and database applications [3], [4],[5], [6],[7],[8] and
[9].

One major disadvantage of KLM is the tedious nature of estimating time at the
millisecond level. Even tasks which take a user only two to three minutes to complete
are composed of several hundred operators. One must remain vigilant in making these
estimates. Changes are inevitable and errors arise from forgetting operations (Bonnie
John, personal communication, October 12th, 2008). In our experience, two to three
minute tasks took around an hour to two hours to create the initial model in Excel,
then an additional hour in making changes.

Estimating Productivity: Composite Operators for Keystroke Level Modeling 3

Software to Model KLM Operators: Cog-Tool

A better way of building the estimates comes from a software-tool called Cog-
Tool, built and maintained at Carnegie Mellon [10] Cog-Tool itself is the results of
dissatisfaction with manual GOMS estimating [7]. Cog-Tool is free to download and
after some familiarity can be a powerful and certainly more accurate cognitive
modeling tool than hand-tracked estimates. Cog-Tool builds the task time estimates
by having the analyst provide screen-shots or graphics from the application and then
define each object the users interact with (e.g., a button, a drop-down list, etc.). There
is a bit of overhead in defining all the objects and defining the sequence of steps the
users take during a task. Once completed, however, Cog-Tool provides an easy way
to get updated estimates on the productivity of a task. User-interface designers can
actually do the prototyping within Cog-Tool and this in-fact exploits the functionality
since changes made within the prototyping environment will immediately lead to a
new task-time estimate. If prototyping is done in another environment (which it is in
our organization) then the analyst will need to import, define and update the objects
and task-flows for each change made.

Consolidating the Operators

Our organization has a rather complicated infrastructure of prototyping tools for
designers so shifting our prototyping efforts into CogTool, while possible, would be a
large undertaking surely met with resistance. We wanted a method to create estimates
using KLM like Cog-Tool, that automated the tedious estimation process. We also
wanted to allow designers to generate prototypes in whatever environment they
preferred. Many requests for productivity come from the Marketing and Strategy
teams who can use this information to support sales. We also wanted a method by
which we could allow product managers and product strategists to generate their own
estimates with little involvement from the usability team.

Looking to Industrial Engineering

Some of the inspiration for GOMS (see [1], p. 274) came from work-measurement
systems in Industrial Engineering which began in the early 1900s (e.g., Fredrick
Taylor) and evolved into systems like MTM (Methods Time Management see [11]).
Just like GOMS, these systems decompose work into smaller units and use
standardized times based on detailed studies. These estimating systems evolved
(MTM-2, MTM-C, MTM-V, etc.) to reflect the different domains of work and more
sophisticated estimates. Generating task-times with these systems, while accurate, are
often time consuming. A modification was proposed by Zandin [12] called the
Maynard Operation Sequence Technique (MOST). MOST, also based on the MTM
system, uses larger blocks of fundamental motions. Using MOST, analysts can create
estimates five times faster than MTM without loss of accuracy [13].

Similar to the MOST technique, we wanted to describe user-actions at a higher
level of work. Instead of building estimates at the level of hand-motions and mouse

4 Jeff Sauro

clicks, we wanted to estimate at the level of drop-down selections and button clicks.
Each of these operations is still composed of the granular Card, Moran, and Newell
operators, but the low-level details which caused the errors and were time consuming
could be concealed from analysts.

Method

To refine the KLM technique to a higher level of abstraction we first wanted to see
if these higher-level composite operators could predict task times as well as the low-
level operators. We used the following approach:

1. KLM Estimation: Estimate task times using the KLM technique with low
level operators for a sequence of tasks.

2. Generate Composite Operators: Generate an estimate of the task times for
the same tasks using the composite operators by identifying larger
operational functions.

3. Empirically Validate: Validate the new composite operators by testing
users completing the same tasks repeatedly.

4. Refine Estimates: Use empirical data to refine composite estimates (such as
updating the system response time) and modify the mental operators to
account for concurrent processing.

KLM Estimation

Using the method defined in [1] and [5], we estimated the times. For example, the
operators for the initial operations of the task “Create an Expense Report” are:

1. M: Mental Operation: User Decides where to click (1.350s)
2. H: Home: User moves hand to Mouse (.350s)
3. P: Point: User locates the create expense report link target (1.1s)
4. K: Key: User clicks on the link (.25s)
5. R: System Response time as New Page Loads (.75s)

The system response time was updated based on taking some samples from the
applications.

Generate Composite Operators

Using the granular steps from above, the logical composite operator is clicking on
a link, so the five steps above are replaced with: Click on Link/Button. The time to
complete this operation is modeled as 1.350 + .350 + 1.1 +.250 +.75 = approximately
3.8 seconds. This process was repeated for all steps in the 10 tasks.

Estimating Productivity: Composite Operators for Keystroke Level Modeling 5

While not a complete list, we found that a small number of composite operators
was able to account for almost all user actions in the 10 tasks across the two web
applications. The most commonly used actions are listed below:

1. Click a Link/ Button
2. Typing Text in a Text Field
3. Pull-Down List (No Page Load)
4. Pull-Down List (Page Load)
5. Date-Picker
6. Cut & Paste (Keyboard)
7. Scrolling
8. Select a Radio/Button
9. Select a Check-Box

Empirical Validation

We tested 26 users on two enterprise web-based applications (hereafter Product O
and Product P). The products were two released versions of a similar travel and
expense reporting application allowing users to perform the same five tasks. The
participants regularly submit reports for travel and expenses and were experienced
computer users. Ten of the participants had never used either of the applications,
while 16 of them had used both.

To reduce the learning time and to provide a more stable estimate of each operator,
each participant was shown a slide slow demonstration of how to perform each task.
This also dictated the path the user should take through the software. They then
attempted the task.

The participants were not asked to think out loud. They were told that we would be
recording their task times, but that they should not hurry – rather to work at a steady
pace as they would creating reports at work. If they made an error on a task, we asked
them to repeat the task immediately. To minimize carry-over effects we counter-
balanced the application and task order. We had each participant attempt the five
tasks three times on both systems. The training was only showed to them prior to their
first attempt. From the 30 task attempts (5*2*3=30) we had hundreds of
opportunities to measure the time users took to complete the dozens of buttons, links,
drop-downs and typing in text-boxes. These applications were selected because they
appeared to provide a range of usable and unusable tasks and exposed the user to most
of the interface objects they’d likely encounter in a web-application.

The goal of this test setup was to mimic the verification methods Card, Moran, and
Newell did in generating their granular estimates. They, however, had users perform
actions hundreds of times. Comparatively, our estimates were more crudely defined.
We intended to test the feasibility of this concept and were most interested in the final
estimate of the task-time as a metric for the accuracy of the model.

6 Jeff Sauro

Concurrent Validation

When estimating with KLM one typically does not have access to user data on the
tasks being estimated. It is necessary to make assumptions about the system response
time and the amount of parallel processing a user does while executing a sequence of
actions. System response time understandably will vary by system and is affected by
many factors. Substituting a reasonable estimate is usually sufficient for estimating
productivity.

In estimating parallel processing, there are some general heuristics ([2], p. 77) but
these will also vary with the system. For example, as a user becomes more proficient
with a task they are able to decide where to click and move the mouse simultaneously.
The result is the time spent on mental operators are reduced or removed entirely from
estimate. In the absence of data, one uses the best estimate or the heuristics.

Because our goal was to match the time of users and we had access to the system,
we needed to refine the operators with better estimates of actual system response time
and of the parallel processing. To do so, we measured to the hundred of a second the
time it took users to complete the composite operations (e.g., clicking a button,
selecting from a pull-down list) as well as waiting for the system to respond. We
adjusted the composite operators’ total time by reducing the time spent on mental
operation; in some cases eliminating them entirely (see also [14], for a discussion of
this approach). The final empirically refined estimates appear in Table 1 below.

Composite Operator Refined Time (seconds)
Click a Link/ Button 3.73
Pull-Down List (No Page Load) 3.04
Pull-Down List (Page Load) 3.96
Date-Picker 6.81
Cut & Paste (Keyboard) 4.51
Typing Text in a Text Field 2.32
Scrolling 3.96

Table 1. Composite Operators and the refined time from user times.

Some of the operators need explanation. The Date-Picker operator will vary
depending on the way the dates are presented. The Cut & Paste Keyboard option
includes the time for a user to highlight the text, select CTRL-C, home-in on the new
location and paste (CTRL-V). The estimate would be different if using context menus
or the web-browser menu. Typing Text in a Text Field only represents the overhead
of homing in on a text-field, placing the curser in the text-field and moving the hands
to the key-board. The total time is based on the length and type of characters entered
(230msec each). Finally, the refined times above contain a system response time
which will vary with each system. That is, it is unlikely that clicking of a button and
waiting for the next page to display will always take 3.73 seconds. Future research
will address the universality of these estimates across more applications.

Estimating Productivity: Composite Operators for Keystroke Level Modeling 7

Results & Discussion

Table 2 below shows the results of the KLM estimates using the “classic” Card
Moran and Newell operators and the new composite operators for all 10 tasks. Both
the number of operators used and the total task times are shown.

Classic KLM Composite KLM

Product Task # of
Operators

Time
(sec)

of
Operators

Time
(sec)

O
Create Meeting Rprt

81 62 23 98

O
Update a Saved Rprt

51 52 21 46

O
Edit User Preference

43 26 15 35

O
Find an Approved Rprt.

32 18 6 26

O
Create Customer Visit Rprt

149 88 32 55

P
Create Meeting Rprt

169 134 36 156

P
Update a Saved Rprt

93 74 21 82

P
Edit User Preference

65 46 13 60

P
Find an Approved Rprt

48 31 11 43

P
Create Customer Visit Rprt

131 118 23 111

Mean 86.2 64.9 20.1 71.2

SD 48.1 38.9 9.3 40.5

Table 2. Comparison between Classic KLM Composite KLM Time & Operators

The data in Table 2 show there to be a difference of six seconds between the
composite and classic KLM estimates of the mean task completion time but this
difference is not significant [t (17) = .727 p >.7]. The correlation in task time
estimates between the two systems is strong and significant (r =.891 p <.01). The
average number of operators used per task differed substantially—66 (86.2 vs 20.1)
representing a 75% reduction. This difference was significant [t (9) = 4.27 p <.01].
This reduction in the number of operators per task suggests estimates can be made 4
times faster using composites operators.

Do the applications differ in their Composite KLM times?

Next we used the composite operators to estimate which product had better
productivity (allowed users to complete the tasks faster) as this would be one of the
primary-aims of estimating productivity. Table 3 shows the average of the KLM times
for the sum of the operations for the five tasks for both applications.

8 Jeff Sauro

Task Product
P

(Secs.)

Product
0

(Secs.)

Diff.

(Secs)
% Diff.

Create Meeting Report
156 98 58 37

Update a Saved Report
82 46 36 44

Edit User Preference
60 35 25 42

Find an Approved Report
43 26 17 40

Create Customer Visit Report
111 55 56 50

Average 90 52 38 42

Table 3: KLM Composite Estimates between applications.

Table 3 above shows the KLM composite estimates to predict Product O to be
approximately 42% more productive (90-52)/90 than Product P. To validate these
estimates we used the 3rd error-free completed task from each user for the empirical
estimates. Table 4 below shows the mean and standard deviations for both products.

Task
Prod. P

(SD)

Prod. O

(SD)
Diff. n

%
Diff.

t
p-

value

1 Create Meeting Rpt 157 (24) 105 (14) 52 16 33 9.5 <.001

2 Update a Saved Rpt 81 (19) 54 (9) 26 13 32 6.1 <.001

3 Edit User Preference 52 (13) 34 (6) 18 15 35 5.0 <.001

4 Find an Approved Rpt 38 (10) 33 (11) 5 18 13 1.6 >.12

5 Create Cust. Visit Rpt 123 (19) 61 (14) 62 15 50 11.9 <.001

Ave 89 (49) 57 (29) 32 15 36

Table 4: Mean Task Times in Seconds for All Participants for Their Last Trial
(Completed & Error Free Attempts Only)

The third error free trial data shows the Product O application to be approximately
36% more productive (89-57)/89 than Product P. This difference represents an error
of 14% (.42-.36)/.42. The estimates of 89 seconds and 57 seconds represent errors of
1% and 9% respectively.

In assessing the accuracy of these estimates we are using the mean time from a set
of users, which is in itself an estimate of an unknown population mean time of all
users. There is therefore error around our estimate, which varies depending on the
standard deviation and sample size of the task (just as in any usability test which uses
a sample of users to estimate the unknown mean time). Some tasks have fewer users
since not all of the 26 users were able to complete the third task on both systems

Estimating Productivity: Composite Operators for Keystroke Level Modeling 9

without error. The means and 95% confidence intervals around the empirical
estimates are shown in Figure 1 below. Also on the graph are the predicted KLM
estimates using both the classic and composite methods.

Task Time (seconds)

Task # Product

5

4

3

2

1

P

O

P

O

P

O

P

O

P

O

18016014012010080604020

95% CI for the Mean
3rd Trial Error-Free Times by Task

Fig. 1. Means and 95% Confidence Intervals for 3rd Error-Free Trial by Task and Product (blue
circles and error bars). The black triangles are the Composite estimates and the black squares
are the granular “classic” estimates.

Figure 1 shows visually the variability in the users’ mean times. When the KLM
estimates are within the range of the blue error bars, there is not a significant
difference between the KLM estimate and the likely population mean time. For
example, both KLM estimates are not as accurate on Task 1 (especially the Classic
KLM estimate) as both estimates are outside the range of the error-bars. On task 2 the
estimates are more accurate as three out of the four KLM estimates are within the
likely range of the actual user time.

Limitations

While the refined times of the operators displayed in Table 1 above estimated our
total task time well, actual composite times will vary with each system. A major
factor in each composite operator is the system response time. For desktop
applications there might be little if any latency compared to the typical network
delays one gets with a web-application. For each system, an analyst should define the
composite operators, which would likely include many of the ones defined here.

10 Jeff Sauro

Conclusion

The data from this initial exploration into combining the granular operators into
composite operators shows KLM estimates can be made four-times faster with no loss
in accuracy. The estimates made with the composite KLM operators are within 10%
of the observed mean time of error free tasks. Composite task times were not
significantly different than those from classic KLM estimates (p > .7) and task level
times correlated strongly (r=.89). While the composite operators and their times will
vary based on the interface, the method of combining low-level operators into a
higher-grain of analysis shows promise. When productivity measures need to be taken
and cognitive modeling is used as a more efficient alternative, using composite
operators similar to those defined here show promise for faster and more
approachable than millisecond level KLM estimates.

References

1. Card, S., Moran, T., and Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

2. Raskin, Jef The Humane Interface Addison Wesley Pres. 2000
3. Baskin, J. D. and John, B. E. 1998. Comparison of GOMS analysis methods. In CHI

98 Conference Summary on Human Factors in Computing Systems (Los Angeles,
California, United States, April 18 - 23, 1998). CHI '98. ACM, New York, NY, 261-
262

4. John, B. (1995). Why GOMS?. Interactions 2, 4, 80-89.
5. Olson, J. R. and Olson, G. M. 1990. The growth of cognitive modeling in human-

computer interaction since GOMS. Hum.-Comput. Interact. 5, 2 (Jun. 1990), 221-
265.

6. Gray, W.D., John, B.E., & Atwood, M.E. (1993). Project Ernestine: A validation of
GOMS for prediction and explanation of real world task performance.’’ Human–
Computer Interaction, 8, 3, 207-209.

7. John, B., Prevas, K., Salvucci, D., & Koedinger, K. (2004) Predictive Human
Performance Modeling Made Easy. Proceedings of CHI, 2004 (Vienna, Austria,
April 24-29, 2004) ACM, New York.

8. Gong, R. and Kieras, D. (1994). A validation of the GOMS model methodology in
the development of a specialized, commercial software application. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Boston,
Massachusetts. CHII ’94, ACM, New York, NY, 351-357

9. Haunold, P. and Kuhn, W. (1994). A keystroke level analysis of a graphics
application: manual map digitizing. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Boston, Massachusetts. CHII ’94, ACM, New
York, NY, 337-343.

10. John, B (2009) The Cog-Tool Project http://www.cs.cmu.edu/~bej/cogtool/ accessed
Jan. 2009.

11. Maynard, H, G. Stegemerten and Schwab, J Methods Time Measurement New York
McGraw-Hill, 1948

12. Zandin, Kjell MOST Work Measurement Systems, New York: Marcel Dekker 1980.
13. Niebel and Freibalds Methods, Standards, and Work Design McGraw-Hill 2004
14. Mayhew, D. (2004), Keystroke Level Modeling as a Cost-Justification Tool. Chapter

appearing in Bias & Mayhew (Eds.) Cost-Justifying Usability , 2nd Ed. 465-488

