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ABSTRACT 
Current methods to represent system or task usability in a 
single metric do not include all the ANSI and ISO defined 
usability aspects: effectiveness, efficiency & satisfaction.  
We propose a method to simplify all the ANSI and ISO 
aspects of usability into a single, standardized and summated 
usability metric (SUM). In four data sets, totaling 1860 task 
observations, we show that these aspects of usability are 
correlated and equally weighted and present a quantitative 
model for usability.  Using standardization techniques from 
Six Sigma, we propose a scalable process for standardizing 
disparate usability metrics and show how Principal 
Components Analysis can be used to establish appropriate 
weighting for a summated model.   

SUM provides one continuous variable for summative 
usability evaluations that can be used in regression analysis, 
hypothesis testing and usability reporting. 
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INTRODUCTION 
In a summative usability evaluation, several metrics are 
available to the analyst for benchmarking the usability of a 
product.  There is general agreement from the standards 
boards ANSI 2001[2] and ISO 9241 pt.11[18] as to what the 
dimensions of usability are (effectiveness, efficiency & 
satisfaction) and to a lesser extent which metrics are most 
commonly used to quantify those dimensions.  Effectiveness 

includes measures for completion rates and errors, efficiency 
is measured from time on task and satisfaction is summarized 
using any of a number of standardized satisfaction 
questionnaires (either collected on a task-by-task basis or at 
the end of a test session) [2],[18].  

The Irony: Usability Metrics Need to be Easier to Use 
As usability analysts encourage business leaders to track 
“usability” against other indicators of company 
performance—such as revenue growth, customer support 
expenditures or product abandonment rate—the various 
metrics we depend upon become clumsy and difficult to use.  
Each metric is measured on its own scale and yet each must 
be represented in the analysis and reporting process if we are 
to be true to the accepted industry definition of usability.  
Furthermore, differences in the scales make it difficult to 
compare the relative usability of different features or 
products. 

This complexity in analysis and reporting makes usability 
data hard to digest. The analyst is challenged to present 
multiple usability metrics that clearly delineates usable and 
unusable aspects in a product without overwhelming business 
leaders or inadvertently promoting one metric over another. 

To increase the meaningfulness and strategic influence of 
usability data, analysts need to be able to represent the entire 
construct of usability as a single dependent variable without 
sacrificing precision.  

Related Research 
There have been attempts to derive a single measure for the 
construct of usability.  

Babiker et al [3] derived a single metric for usability in 
hypertext systems using objective performance measures 
only. They found their metric correlated to subjective 
assessment measures but could not generalize their model to 
other systems.   

Questionnaires such as the SUMI [22,23], PSSUQ[27], 
QUIS[7] and SUS[5] have users provide a subjective 
assessment of recently completed tasks or specific product 
issues and claim to derive a reliable and low-cost 
standardized measure of the overall usability or quality of use 
of a system. While the authors of these questionnaires do not 
necessarily intend for the questionnaires to act as a single 



measure of usability (e.g. “QUIS was designed to assess 
users' subjective satisfaction with specific aspects of the 
human-computer interface” [7]), they are often used by 
practitioners as a way to measure usability with one number. 
Such usage is often not discouraged by the questionnaires’ 
instructions (e.g. “SUMI is the only commercially available 
questionnaire for the assessment of the usability of software” 
[22] and “The SUS scale is a Likert scale and yields a single 
number representing a composite measure of the overall 
usability of the system [5]”). 

Cordes [8] and McGee [32, 33] used a method of magnitude 
estimation derived from methods in psychophysics as 
outlined by Stevens [45].  Specifically, McGee uses a 
geometric averaging procedure (UME) to standardize ratios 
of participants’ subjective assessment ratings on tasks to 
derive a single score for task usability. His research identifies 
the potential for a standardized measure of usability to 
support usability comparisons across products, the same 
product over time, at lower levels of detail, and of tasks 
common to multiple products.  

Lewis used a rank-based system when assessing competing 
products [25].  This approach creates a rank score comprised 
of both users’ objective performance measures and subjective 
assessment, but the resulting metric only represents a relative 
comparison between like-products with similar tasks.  It does 
not result in an absolute measure of usability that can be 
compared across products or different task-sets. 

These methods provide helpful information to the analyst in 
making decisions about usability; however, one must 
question the ability of methods relying solely on objective or 
subjective measures to effectively describe the entire 
construct of usability in light of the guidance set by ISO 9241 
and ANSI 354-2001 (a point also made by Dumas [9 esp 
p.1096]). Additionally, the reliance on relative ranking falls 
short of an absolute measure that can be freely compared as a 
standardized measure. Yet, the existence and usage of all 
these methods demonstrates the need to represent the 
complex construct of usability into a succinct and 
manageable form.  

BUILDING A QUANTITATIVE MODEL OF USABILITY 
In an attempt to fully represent the entire construct of 
usability as well as creating a single usability metric we 
began with a high-level model of usability starting with the 
ISO/ANSI dimensions (effectiveness, efficiency & 
satisfaction).  We used the following four metrics to 
represent these dimensions—task completion, error counts, 
task times and satisfaction scores (see Figure 1.)  

To investigate the relationship among the metrics to properly 
build the model and a single score, we set up a data collection 
plan for four summative usability evaluations. 

 

Figure 1. Quantitative Model of Usability  

 

METHOD 
Four summative usability tests were conducted to collect the 
common metrics as described above (task completion, error 
counts, task times and satisfaction scores) as well as several 
other metrics as suggested in Dumas and Redish [11], and 
Nielsen [39].  For measuring satisfaction we created a 
questionnaire containing semantic distance scales with five 
points, similar to the ASQ created by Lewis [26] (see Table 5 
below). The questionnaire included questions on task 
experience, ease of task, time on task, and overall task 
satisfaction. The questionnaires were administered 
immediately after each task to improve accuracy [16]. The 
four usability tests were conducted in a controlled usability 
lab setting over a two-year period.  Participants were asked to 
complete the tasks to the best of their ability and the 
administrator only intervened when the participant indicated 
they were done or gave up.  At the end of the test session, 
“post-test” satisfaction questions similar to those in SUMI 
and SUS that asked about overall product usability were 
given to users.  

The applications tested were all from the financial and 
accounting industry.  Three were Windows-based and one 
application was web-based. One application was tested twice 
one year apart.  Each test used different test administrators 
(one administered two tests) in five geographic locations 
within the US.  Data was collected from 129 total 
participants completing a total of 57 tasks.  Participants 
varied in their application experience, gender, and industries.  

RESULTS 

Examining the Relationships between the Metrics 
To attempt to combine the metrics into a single usability 
score we examined the relationship among the four primary 
variables for each task observation. We generated a 
correlation matrix with all four variables from all four data 
sets plus a combined data set containing data from all tests.   

As can be seen in the lower right cell of Table 1, the Pearson 
Product Moment correlation coefficients between satisfaction 
and task completion are consistent with prior correlation 
analyses (that is, displaying moderate and significant 
correlations between .3 and .5) [26, 29].  What’s more, the 
positive correlation between subjective measures 
(satisfaction) and objective measures (time, errors and 
completion) are also consistent with Nielsen’s 1994 meta-
analysis [38] (although the subjective measures were 
preferences instead of satisfaction in that study). 

 



 Time Errors Satisfaction 

Errors 
A 
B 
C’03 
C’04 
Combined 

 
.490 
.594  
.578  
.523 
.517  

  

Satisfaction 
A 
B 
C’03 
C’04 
Combined 

 
-.379  
-.454  
-.512  
-.464  
-.478  

 
-.396 
-.449 
-.403 
-.286 
-.348 

 

Completion 
A 
B 
C’03 
C’04 
Combined 

 
-.145 
-.403 
-.302 
-.251 
-.268 

 
-.428 
-.492 
-.380 
-.380 
-.384 

.369

.410

.503

.433

.454 

Table 1: Correlation Matrix of Four Usability Metrics by Task 
Observation for Five Data Sets (All correlations p <.001) 

Key for Table 1 

Data Set Observations # of Participants 

Product A 
Product B 
Product C ‘03 
Product C ‘04 
Combined Data 

294 
144 
644 
778 

1860 

21
11
48
49

129 

 

Frøkjær et al [12] earlier has made the case for including all 
aspects (effectiveness, efficiency and satisfaction) when 
measuring the usability of a system since it was found that 
these aspects did not always correlate in the data they 
reviewed.  We agree with Frøkjær et al’s conclusion to 
measure all aspects of usability, however, not because they 
do not correlate with each other (our data clearly shows the 
opposite), but because each measure adds additional 
information not contained in the other measures. 

The average values from the post-test satisfaction questions 
also showed low to moderate and significant correlations 
with average task performance by user (r = .22 to .33 p <.10). 
The correlations were not as strong or as significant as the 
post-task satisfaction questions but still showed a similar 
relationship.  We used the values from the post-task 
questions since the focus of our analysis was at task-level 
usability and this provided us with the same number of 
observations for all four variables. 

Summarizing Variables using Principal Components 
Analysis 
When variables that are ostensibly measuring the same event 
correlate with each other, there is redundant information 
making analysis more complicated. Principal Components 
Analysis (PCA) [20] is a statistical technique that is 
commonly used in such situations. PCA linearly transforms 
an original set of variables into a smaller set of uncorrelated 
variables that represents most of the information in the 
original set of variables. Its goal is to reduce the 

dimensionality of the original data set.  PCA is not to be 
confused with Factor Analysis, another common multivariate 
technique that can use a method of Principal Components.  
Factor Analysis aims at revealing the underlying structure of 
the data from many variables, whereas the aim of PCA is to 
explain the maximum amount of variance with the fewest 
number of components (See [20] esp. Ch 7).  A smaller set of 
uncorrelated variables can be much easier to understand and 
use in further analyses than a larger set of correlated 
variables.  

The variables used in a PCA need not be normally distributed 
or all continuous.  The variables can be a mixture of 
continuous, ordinal and binary variables [20 esp. p. 339]. 
This flexibility makes PCA an especially helpful procedure 
in interpreting usability data that takes the form of continuous 
(time), ordinal (satisfaction) and binary (completion).  The 
technique has been used to summarize behavioral data in the 
social sciences [36],[10] and [20]. 

Using the output of a Principle Components Analysis we: (a) 
build a better model of usability by minimizing the random 
error from any one measure (b) remove redundant data from 
the overlapping variables (e.g. if information contained in 
errors can be accounted for by time or satisfaction) and (c) 
uncover which, if any of the four original variables, weigh 
more heavily in the model.  For example, task completion or 
satisfaction may account for more variance than time or 
errors. 

PCA Results and Output 
The first step in interpreting the results of a Principal 
Components Analysis is to determine which components to 
retain.  There are several methods and none are definitive, 
with each method requiring some level of judgment.  Some 
of the more commonly used methods include: 

1. Kaiser’s Rule: Only retain principal components (PCs) 
with eigenvalues greater than 1. [21]. Jolliffe 
recommends .7 as more rigid cutoff [19].  

2. Scree Plot Test: Stop retaining components at the point 
in a plot of the eigenvalues when the line levels off more 
or less horizontally similar to a pile of rocks at the 
bottom of a hill [6]. 

3. Cumulative Variance: Stop retaining when the 
cumulative variance of the PC’s reach a certain 
predetermined level.  This level fluctuates depending on 
the goal of the analysis. At a minimum the majority 
(greater than 50%) should be accounted for by the PCs 
and ideally 70%-90% [20]. 

The results of the analysis revealed similar results for all five 
data sets. We retained the first PC based on it meeting all 
three criteria listed above. Only the first PC contained 
eignervalues greater than 1 in all data sets (see Table 2 in row 
“PC 1”). As per method 2, the Scree plots of the eigenvalues 
also indicate only retaining the first PC (see Figure 2).  The 



cumulative variance from the first PC meets the minimum 
requirements (>50%) from method 3 (see Table 3).  
After determining the number of components to be retained, 
the next step is to identify the construct that the retained PCs 
measure and assess which variables account for more of the 
variance.  

As can be seen in Table 4, all four variables are significant 
(having coefficients greater than .3 [14]). Since all the 
variables are showing significant coefficients it indicates that 
each variable adds new information not contained in the 
other variables.  That is, if we saw the coefficients for errors 
consistently falling below .3 we would conclude that errors 
are not adding a sufficient amount of new information to the 
combined model.   An interpretation of the coefficients 
would read that as errors and time decrease, completion and 
satisfaction increase.  This relationship is generally regarded 
as the construct of “usability.”  

Since all four variables have roughly equal coefficients on 
the first principal component across all five data sets we 
concluded that all four variables account for the same amount 
of variance—they are equally weighted. This result is 
consistent with Nunnally [40 esp. p. 297] who found that 
unweighted measures generally correlated so highly with 
weighted measures that it is seldom worth the effort in 
determining weights.  

 A B C’04 C’03 Combined 

PC 1 2.1171 2.4038 2.1712 2.3390 2.2260 

PC 2 0.8575 0.6071 0.7943 0.7681 0.7667 

PC 3 0.6248 0.5713 0.6764 0.5423 0.6260 

PC 4 0.4005 0.4177 0.3582 0.3506 0.3813 

Table 2. Eigenvalues for Principal Components (PC) by Data 
Set (Only the first component in each data set has an  

eigenvalue >1) 
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Figure 2. Scree Plot of the Eigenvalues from all 5 Data Sets 
showing break in the 2nd PC indicating only 1 PC should be 

retained. 

 

 A B C’04 C’03 Combined 

PC 1 0.529 0.601 0.543 0.585 0.556 

PC 2 0.214 0.152 0.199 0.192 0.192 

PC 3 0.156 0.143 0.169 0.136 0.156 

PC 4 0.100 0.104 0.090 0.088 0.095 

Table 3. Proportion of Variance Accounted for Each Principle 
Component (PC) by Data Set (PC 1 accounts for a sufficient 

amount of the variance) 
 

Data Sets  

A B C’04 C’03 Combined 

Variance 52.9% 60.1% 54.3% 58.5% 55.6% 

Errors -.561 -.526 -.507 -.508 -.508  

Time -.479 -.524 -.525 -.517 -.515  

Completion .445 .478 .463 .453 .461   

Satisfaction .508 .470 .503 .519 .515   

Table 4. Coefficients of the 1st Component called "Usability" 

Components 2, 3 and 4 
We examined the relationship between the variables in the 
remaining three principal components in all data sets and did 
not find a pattern that was interpretable. While the second 
component contained as much as 21% of the variance (see 
Table 3, row “PC 2”), there was no consistent discernable 
pattern. PC’s 3 and 4 accounted for very little variance and 
could not be interpreted, as is common with the last PCs [20]. 

Due to our desire for parsimony, the aforementioned 
inconsistencies and the first PC meeting the requirements in 
methods 1-3, we retained only the first principal component.  

Using the PC Scores as a Surrogate Variable: A 
Summated Usability Score 

Next we stored values (called scores) of the first PC and used 
these values as surrogate variables. PC scores are created by 
multiplying the variable coefficients by the raw variable data 
in standardized form and summing the products [20]. This 
creates one surrogate value instead of four. The surrogate 
variable is a composite of the four raw variables and accounts 
for between 52% and 60% of the variance.  This variable 
represents the best mathematical combination of all four 
variables. It can be thought of as a “usability score” and can 
be used in the same way as any of the four variables can.  

If the usability analyst has access to statistical software to run 
a PCA and store the scores from the first component, then he 
or she can use those scores for regression analysis, 
hypothesis testing and drawing conclusions in experimental 
analyses.



Limitations of Using PC Scores as Surrogate Variables 
The major drawback to using the stored scores is that they 
are dependent on the raw data used for that study and 
therefore cannot be compared to other component scores 
from other data sets. To compare scores across tests a 
summated scale needs to be created that duplicates the 
relationship built from the PCA [14].  Doing this requires 
standardizing all variables and then multiplying them times 
the coefficients from the first PC.  Since the coefficients were 
consistently equal across the data sets, taking the arithmetic 
mean of the four standardized variables (or multiplying each 
by .25 and summing them) will provide similar values as the 
PCA scores.  This is similar to the method succinctly 
described by Martin and Bateson [31]: 

Measures that are to be combined usually need to be 
standardized so that they have the same mean and 
variation. One-way is to calculate for each raw value its 
z score: the score for that [observation] minus the mean 
score for the sample divided by the standard deviation. 
Scores standardized in this way have a mean of zero and 
a standard deviation of 1.  The composite score for an 
individual is then the average of the z scores of the 
separate measures.  This procedure gives the same 
statistical weight to each measure.  If different weights 
are to be given to the separate measures, this is best 
done explicitly by multiplying the z score of each 
measure by an amount that can be specified; for 
instance, by its loading on a principal component, 
obtained by principal component analysis. p124 

The goal then becomes standardizing the four variables 
(time, satisfaction, completion and errors). 

STANDARDIZING USABILITY METRICS 
To standardize each of the usability metrics we created a z-
score type value or z-equivalent.  For the continuous data 
(time and average satisfaction), we subtracted the mean value 
from a specification limit and divided by the standard 
deviation.  For discrete data (completion rates and errors) we 
divided the unacceptable conditions (defects) by all 
opportunities for defects.  This method of standardization 
was adapted from the process sigma metric used in Six 
Sigma [4],[17], [43]. See Sauro & Kindlund [44] for a more 
detailed discussion on how to standardize these metrics from 
raw usability data. 

Standardizing Task Completion  
We can assume that all users want to successfully complete 
tasks, so a defect in task completion can be identified as an 
instance of a user failing a task. An opportunity for a defect 
in task completion is simply each instance of a user 
attempting a task. Therefore, we standardized task 
completion as the ratio of failed tasks to attempted tasks. This 
proportion of defects per opportunities has a corresponding z-
equivalent that can be looked up in a standard normal table.  
For example, a task completion rate of 80% would have the 
z-equivalent of .841.  

Standardizing Error Rates 
Unlike the calculation for task completion, it is insufficient to 
define “error opportunities” as simply each instance of a user 
in the sample attempting a task.  This is because not all tasks 
are equal when it comes to error potential and users can 
commit more than one error per task (unlike task completion 
where they can only fail once per task).  Complex tasks with 
many required components for task success have a greater 
potential for error then less complex tasks [41].   Our 
standardization process needs to account for this variation in 
error potential when trying to calculate the error probability.   

Therefore, we defined a task’s “error opportunities” as the 
number of sub-tasks that a user must conform to in order to 
complete a task error-free. This method is similar to 
calculating the Human Error Probability (HEP) as described 
in [41] and [15].  "The general approach for [determining 
HEP] is to divide human behavior in a system into small 
behavioral units, find data for these subdivisions and then 
recombine them to estimate the error probabilities for the task 
[41].” 

Here is an example of how we defined a task’s opportunities 
in terms of its sub-tasks: 

Example Task: Add a new customer record to the Customer 
List 

• Opportunity 1: Locate access point for adding a new 
customer and launch data form 

• Opportunity 2: Enter new customer record ID 
information 

• Opportunity 3: Enter account opening balance 
information correctly 

• Opportunity 4: Enter customer address information 

• Opportunity 5: Enter customer contact information 

• Opportunity 6: Submit record successfully 

While there are 6 opportunities for the user to make errors, 
there can be multiple ways an error can be committed. It’s 
important to note that identifying opportunities does not 
mean identifying ideal paths through the software.  Users 
may take many paths or choose many directions to 
accomplish certain tasks.  If certain required operations are 
not completed, it’s an error regardless of how the user arrived 
at the screen. For example, Opportunity #1 can have the 
following error instances associated with it:  

• User can’t find access point  

• User launches an existing customer record instead of 
adding a new one  

• User launches a new vendor record instead of a new 
customer record  

Each error instance is unique, yet all are associated with the 
more general “opportunity” to make an error in this 
component of the task. Once the task’s error opportunities 



have been identified, the z-equivalent can be calculated by 
dividing the total number of errors by the error opportunities. 
This proportion can be approximated using the standard 
normal deviate.  

Standardizing Satisfaction Scores  
As described in the Methods section, we used a post task 
questionnaire containing 5-point semantic distance scales 
with the end points labeled (e.g. 5:Very Easy to 1:Very 
Difficult). For the analysis we created a composite 
satisfaction score by averaging the responses from questions 
of overall ease, satisfaction and perceived task time (See 
Table 5) .The three questions had high internal-reliability 
(coefficient alpha .92, .91, .91 .89 for the four data sets).  The 
average of the responses (instead of the response from only 
one question) provided a less error-prone score and one more 
descriptive of the users’ perceived sense of usability, see [34 
esp p.15], [27], [40] and [13].  

To standardize the composite score we looked to the 
literature for a logical specification limit. Prior research 
across numerous usability studies suggests that systems with 
“good-usability” typically have a mean rating of 4 on a 1-5 
scale and 5.6 on a 1-7 scale [38]. Therefore we set the 
specification limit to 4.  To arrive at a standardized z-
equivalent for composite satisfaction we subtracted the 
average rating of a user’s satisfaction score from 4 and 
divided by the standard deviation.  

While the specification limits of 4 (5-point scales) and 5.6 (7-
point scales) are good guideposts for setting specification 
limits they should be used as starting points.  

How would you describe how difficult or easy it was to complete this task? 
Very Difficult   Very Easy  
1 2 3 4 5 

How satisfied are you with using this application to complete this task? 
Very Unsatisfied   Very Satisfied  
1 2 3 4 5 

How would you rate the amount of time it took to complete this task?  
Too Much Time   Very Little Time  
1 2 3 4 5 

Table 5. Post-Task Satisfaction Questions used in building 
Composite Satisfaction 

Analysts should always investigate data for the specific 
domain that would either confirm these values as appropriate 
spec limits or specify slightly higher or lower values. 

Standardizing Task Times 
Identifying ideal task times presents an interesting challenge:  
how long is too long for any given task?  When comparing 
task times between products, a simple T-Test of the means 
will identify significant differences.  For looking at only one 
set of times, the point at which a task takes too long is not as 
easy to define.  It is not indefinable, just difficult to define in 
an absolute sense without some arbitrariness. Lewis [24], 
Whiteside, Bennett and Holtzblatt [46] and Sauro [42] offer 

recommendations on identifying specification limits for task 
times.  

Once the ideal task time has been set for each task, 
standardizing the task time involves subtracting the raw task 
time from the specification limit and dividing by the standard 
deviation to arrive at the z-equivalent.  

Creating a Single, Standardized and Summated Usability 
Metric: SUM 
We created a single, standardized and summated usability 
metric for each task by averaging together the four 
standardized values based on the equal weighting of the 
coefficients from the Principal Components Analysis.   To be 
sure our method of standardization was properly reflecting 
the relationship built from the PCA, we regressed the scores 
from the 1st PC with the average of our four standardized 
metrics for each data set (see Figure 3 for an example from 
data set C’04). 

As can be seen from the Fitted Line Plot in Figure 3, there is 
a very strong positive correlation between the scores 
calculated from the PCA and from the method of 
standardization  [(R-Sq adj (82.1%) p <.001)].  
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Figure 3. Regression Plot of PCA Score on the Standardized 

Summated Usability Metric for Product C04 (776 Observations) 
(R-Sq adj (82.1%)  p <.001). 

 

 

Figure 4.  A Weighted Quantitative Model of Usability 

This strong relationship suggests that using the average of the 
four standardized metrics will adequately mimic the 
relationship built from the Principal Components Analysis. 
This standardized and summated usability metric can now be 
used for analysis as well as for comparisons across tasks and 
studies. Our Quantitative Model of Usability (see Figure 4) 
now reflects the equal weighting of the standardized 
component metrics to summarize the construct of usability.



DISCUSSION 

Scalability and Limitations 
Four data sets and 1860 observations provide a starting point 
for further investigating this relationship between usability 
metrics.  It is encouraging that similar results were obtained 
under different testing conditions, with different products and 
using different test administrators with slightly different 
testing protocols.   Testing a greater variety of products with 
a broad spectrum of users will provide more insight into the 
validity of this model and approach. Future analyses are 
necessary to provide an indication of how versatile this 
model is in different domains and with different interfaces 
(both hardware and software). 

As stated by Molich, et. al. [35], the effectiveness of a 
usability test is dependent on the chosen tasks, the 
methodology, and the persons in charge of the test. We 
acknowledge that the reliability of any metrics procured from 
a summative evaluation can be equally dependant on these 
factors. However, having a model for deriving a standard 
measure is also a powerful tool to evaluate differences in 
testing procedures. 

Are We Measuring Usability? 
Our method summarizes the majority of variance in four 
metrics commonly used to assess the usability of a product in 
a summative evaluation.  Whether these metrics properly 
quantify “usability” is a much larger discussion and we do 
not claim to be definitively measuring the construct of 
usability.  

A summated usability metric is only as good as its underlying 
component metrics and to the extent that ISO and ANSI have 
properly identified those is certainly worth discussion. Others 
might add more metrics to a summative model, such as 
measures for learnability or memorability [36], [1].  Still 
others might argue for fewer measures for the sake of 
expediency or to remove subjectivity.  For example, 
identifying errors and error opportunities is both time 
consuming and arguably the most subjectively built metric—
not all analysts will agree on what constitutes an error or 
error opportunity.  Errors are also not always included in 
models of usability [2],[30]. 

Reducing the Number of Variables in the Model 
There are strong opinions both for and against including 
errors in a summative model. We excluded errors from our 
PCA analysis and found that the 1st PC can still summarize 
the majority of variance in the three remaining variables.  
The three-variable model also had roughly equally weighted 
variables (although satisfaction weighed slightly more 
heavily in 3 of the four data sets) - see Table 6.  

Error analysis plays a crucial role in formative evaluations 
when the goal is to uncover usability problems in an 
interface. In our data sets, users performed a task 
successfully, quickly and reported a high level of satisfaction 
yet committed some undesirable errors. Only the error 
measurement reflected this “unusable” aspect of the task. 

Errors have a coefficient as strong as any of the other 
variables in the first principal component (see Table 4) 
indicating they provide additional information not contained 
in the other three variables. For these reasons we find their 
inclusion in summative evaluations worth the effort.  

Increasing the Number of Variables in the Model 
We also examined the relationship when including two 
additional metrics—help access and click counts.  The two 
metrics have significant and moderate to strong correlations 
with the existing four metrics (r =.2 to .6 p <.01).  We 
included each variable in the PCA for the respective data sets 
to see how their inclusion affected the variable weights (See 
Tables 7 and 8).  

In data set B, the addition of click counts moderately affected 
the coefficients and slightly reduced the variance. Click 
counts correlated highly with task time and errors (r = .670 
and .589 p <.001 respectively). 

In data set C’04, Help was accessed in 72 of the 778 
observations or about 10% of the time.  Its inclusion also 
slightly changed the coefficients and brought the amount of 
variance down below 50% for the 1st PC (See Table 8).  

 A B C’04 C’03 Combined 
Variance 53.6% 62.3% 59.1% 58.5% 60.2% 
Time -.538 -.594 -.556 -.551 -.555  
Completion .527 .571 .537 .546 .540   
Satisfaction .657 .567 .635 .630 .633  

Table 6. Variance and Coefficients of the 1st Component, 
Errors excluded 

Product B PC 1 PC 2 
Variance 57.9% 16.6% 
Errors -.484 .033 
Time -.497 .166 
Completion .372 .776 
Satisfaction .413 .182 
Click Count -.458 .580 

Table 7. Variance and Coefficients of the 1st and 2nd PCs Click 
count added for Product B Only 

Product C’04 PC 1 PC 2 
Variance 47.9% 16.8% 
Errors -.457 .204 
Time -.504 -.261 
Completion .422 -.581 
Satisfaction .470 -.138 
Help Access -.372 -.730 

Table 8. Variance and Coefficients of the 1st and 2nd PCs Help 
Access added for Product C’04 Only 

While both these variables were helpful for analyses in their 
raw form, we decided against including them in the model 
since both are infrequently collected in summative 
evaluations at our organizations and therefore would impede 
cross-product comparisons.  



If the goals of a summative evaluation require certain metrics 
to be evaluated, then this method of combining standardized 
metrics can still be used.  The analyst should check the 
correlation of the metrics and run a PCA to assess the 
coefficients for weighting and amount of variance explained.  
All things being equal, it’s better to include more variables 
than less in a summative metric.  The point of diminishing 
returns occurs when variables added reduce the amount of 
variance accounted for by one PC to below 50%. This did not 
occur with the addition of click counts in data set B (57.9% 
variance) but did with the addition of Help Access in Data 
Set C’04 (47.9%). 

The major drawback with adding or subtracting variables 
would be that a score created with 3 variables cannot be 
compared to a score created with 4 or 5 variables.  Adopting 
a standard that captures the majority of the variance based on 
the most universal metrics is recommended.  

CONCLUSION 
A single, standardized and summated usability metric (SUM) 
cannot and should not take the place of diagnostic qualitative 
usability improvements typically found in formative 
evaluations. When a summative evaluation is used to 
quantitatively assess the “before and after” impact of design 
changes, the advantage of one score is in its ability to 
summarize the majority of variance in four integral 
summative usability measures.  SUM has two additional 
advantages.  First it provides one continuous variable that can 
be used in regression analysis, hypothesis testing and in the 
same ways existing metrics are used to report usability.  
Second, a single metric based on logical specification limits 
provides an idea of how usable a task or product is without 
having to reference historical data. This score can then be 
used to report against other key business metrics.  

SUM can never replace all the information inherent in the 
component metrics, but like a FICO score, an IQ score or 
even the Richter scale, the ability to provide high-level 
summary information about a complex construct with one 
number should prove helpful for informing and making 
decisions about usability.  

Data from four summative evaluations indicates that our 
model provides a versatile method that can be used to 
develop a single, standardized and summated score for 
analyzing and reporting usability metrics.   
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